Меню

Артефакты на мрт позвоночника

Артефакты на мрт позвоночника

а) Терминология:
1. Сокращения:
• Удельный коэффициент поглощения (specific absorbed radiation, SAR), спинномозговая жидкость (СМЖ), радиочастотный (РЧ)
2. Синонимы:
• «Ложное изображение», артефакт Гиббса, «расплывание» изображения
3. Термины:
• МР артефакты — это искажения изображения, которые могут симулировать ту или иную патологию

1. Общие характеристики:
• Наиболее значимый диагностический признак:
о Артефактные «псевдоизменения» обычно характеризуются причудливым видом и не похожи на какие-либо анатомические образования ни внешне, ни по своей локализации
• Локализация:
о Могут обнаруживаться в любом отделе позвоночника:
— МР-картина зависит от типа регистрируемого артефакта
• Размеры:
о Вариабельны
• Морфология:
о Достаточно необычна и выглядит нефизиологичной или неанатомичной:
— Артефакты при МРТ регистрируются достаточно часто
— К счастью большинство из них достаточно типичны по своим проявлениям, поэтому подготовленный специалист, знающий о ихсущесгвовании, легко их отличит отанатомических структур
о Артефакты движения на КТ в отличие от MP-артефактов нередко напоминают переломы позвонков или врожденные аномалии

(Слева) Аксиальное Т2-ВИ: у пациента с фиксированным спинным мозгом виден классический артефакт химического сдвига ЕВ, подтверждающий наличие жировой ткани в нити спинного мозга. Характер чередования гипер-и гипоинтенсивных участков свидетельствует о передне-заднем направлении оси частот.
(Справа) На аксиальном Т2-ВИ хорошо заметен выраженный артефакт химического сдвига внутри дурального мешка ЕВ и в дуральных воронках спинномозговых нервов, свидетельствующий о наличии воды (СМЖ в дуральных воронках) и жировой ткани (эпидуральная клетчатка) в соседних вокселях. Ось частот направлена справа налево.
(Слева) МРТ, на фронтальном Т2-ВИ отмечается артефактное наложение жировой клетчатки спины на грудной отдел по звоночника. Выраженность подобных артефактов можно уменьшить путем увеличения размеров поля сканирования (FOV), правда ценой снижения пространственного разрешения, если одновременно не увеличить число шагов кодирования фазы.
(Справа) На аксиальном Т1-ВИ видны многочисленные артефакты движения, связанные с дыхательными движениями брюшной стенки и позвоночника, а также отражение фазы позади спины.
(Слева) МРТ, Т2-ВИ, сагиттальная проекция: потеря сигнала и снижение качества изображения верхнегрудного отдела позвоночника, являющееся следствием некорректного включения спинальных магнитных катушечных элементов. Также хорошо виден артефакт «молния», проходящий в краниокаудальном направлении.
(Справа) МРТ, Т1-ВИ, сагиттальная проекция: выраженное искажение изображения нижне-фронтальных отделов головного мозга и тканей лица, связанное с наличием у пациента металлических зубных протезов.
(Слева) Сагиттальное Т1 -ВИ: пациент с супраселлярной краниофарингиомой после операции. Исследование выполнено с целью динамического наблюдения у пациента с метастатической диссеминацией процесса: выявлен метастаз опухоли, расположенный кпереди от моста.
(Справа) Т1-ВИ в режиме C+FS этого же пациента: выраженная полоса артефакта восприимчивости, связанная с неоднородным усилением сигнала жировой ткани и, к сожалению, практически полностью закрывающая собой известный имплантационный метастаз опухоли.
(Слева) МРТ, Т1-ВИ, сагиттальная проекция: выраженные радиочастотные шумы, создающие горизонтальные полосы на изображении, несколько снижающие качество изображения. Обратите также внимание на незавершенный артефакт «молния» в нижней части картинки.
(Справа) На этом аксиальном Т2-ВИ грудного отдела позвоночника в верхней части картинки виден артефакт «молния». Как и большинство других аналогичных артефактов, этот серьезным образом не сказывается на диагностической ценности исследования.
(Слева) На Т1 -ВИ, выполненном у некомплаентного находящегося в делириозном состоянии пациента, видны множественные артефакты движения, значительно ухудшающие качество изображения и делающие исследование неинформативным. Очень важно даже не пытаться что-либо прочесть по таким изображениям, поскольку артефакты могут как симулировать, так и перекрывать собой те или иные патологические изменения.
(Справа) На данном аксиальном Т2-ВИ в режиме C+FS видны выраженные артефакты движения, расположенные вдоль передне-задней оси и отражающие дыхательные движения брюшной стенки. Также здесь регистрируются ложные изображения аорты.
(Слева) На аксиальном Т2-ВИ видны периодически повторяющиеся артефакты кодирования фазы, представляющие собой изображения дурального мешка, симулирующие образования печени и селезенки. Расстояние между дуральным мешком и артефактными его «призраками» в точности одинаковое, что является характерным для периодического артефакта ложных изображений. Зная это, отличить артефакт от истинной патологии достаточнолегко.
(Справа) На этом аксиальном Т2-ВИ видные периодические ложные изображения дурального мешка и спинного мозга, симулирующие двустороннее поражение почек.
(Слева) МРТ, Т1-ВИ, сагиттальная проекция: артефакт искажения градиента в области нижнегрудного отдела позвоночника. Этот артефакт характеризуется искажением изображения на краях большой по размерам FOV (> 30 см), вызванным искажением градиента.
(Справа) На Т2-ВИ виден значительный артефакт ложного изображения, симулирующий сирингомиелию шейного отдела спинного мозга. В этом случае его появление связано с неправильным размещением переднего импульса насыщения напротив шейного отдела позвоночника.
(Слева) На аксиальном C+FS Т1 -ВИ видно негомогенное подавление сигнала жировой ткани с использованием техники химического насыщения жировой ткани: светлые участки — это не под -давшийся подавлению сигнал жировой ткани, а темные участки — неадекватная сатурация сигнала воды.
(Справа) На этом аксиальном C+FS T1-ВИ продемонстрирована полная несостоятельность техники химического насыщения жировой ткани, выраженная в нежелательном и неадекватном насыщении воды, что сводит на нет всю информативность сигнала воды. Подобные артефакты обычно встречаются в областях, отличающихся сложной анатомией, например, в области шей но- грудного перехода.

Артефакт усечения (Гиббса):
о Математическое обоснование этого артефакта основано на усечении вычислительной последовательности, используемой в ходе трансформации Фурье данных к-пространства:
— Возникает вследствие невозможности оцифровки бесконечного количества сигналов при реконструкции исходных данных
— В результате этого происходит «усечение» или укорачивание математический вычислений, отражающее необходимость получения конечного количества сигналов
о Может регистрироваться в обоих фазах и направлениях кодирования, однако более заметен в фазовом направлении, поскольку число последовательностей сигналов здесь обычно меньше
о Возникает на границах областей, отличающихся значительным контрастом сигналов, которые формируют сменяющие друг друга светлые и темные полосы на изображениях, которые в свою очередь могут напоминать ту или иную патологию
о В области позвоночника, в частности, образование артефактов Гиббса может сузить или, наоборот, увеличить в объеме спинной мозг или напоминать по своему виду кистозную полость в спинном мозге
о Уменьшить выраженность этих артефактов можно за счет увеличения числа шагов кодирования фазы или уменьшением числа полей сканирования (field of view, FOV)

Артефакт ложного изображения:
о Периодическое повторение изображения анатомического образования вдоль одной линии, соответствующей направлению кодирования фазы
о Ложные изображения возникают, в частности, при периодических движениях в пределах FOV:
— Примерами таких движений являются ток крови в сосудах, пульсация СМЖ, сердечные сокращения и дыхательные движения
о Как и многие другие артефакты, ложные изображения в большей степени заметны в направлении кодирования фазы, поскольку время регистрации сигнала здесь существенно выше такового в направлении кодирования частоты
— Поэтому эти артефакты располагаются на линии направления фазы и не зависят от направления движения анатомических структур

Артефакт движения:
о Связан с произвольными или непроизвольными движениями человека (случайные артефакты) или пульсирующим током крови в сосудах (периодические артефакты)
о Регистрируются в направлении кодирования фазы
о Могут напоминать по виду патологические интрамедуллярные и экстрамедуллярные образования:
— Обычно хорошо распознаются как артефакты, однако могут снизить диагностическую ценность исследования или сделать его в отношении патологии спинного мозга вовсе неинформативным
о Если движение будет непериодичным (например, перистальтика кишечника), появления ложных изображений не произойдет, однако снижение качества картинки в целом будет хорошо заметно
о Для устранения этих артефактов рекомендуется соответствующим образом проинструктировать пациента, при необходимости использовать седацию, дыхательную поддержку, уменьшить время исследования

Артефакт тока СМЖ:
о Представляет собой ряд периодичных артефактов движения
о Сдвиг фазы движения протонов, связанный с движением СМЖ, может привести к появлению МР-картины, напоминающей интрадуральные кровоизлияния, метастазы или те или иные интрамедуллярные образования
о Заметность этих артефактов можно снизить за счет использования методик компенсации тока СМЖ

Артефакт химического сдвига:
о Прецессия протонов в жировой ткани по своей частоте отличается от таковой у воды:
— Разница между прецессионной частотой протонов воды и жировой ткани при напряженности магнитного поля в 1,5Т составляет 220 Гц
о Пространственное смещение сигналов жира и воды проводит к их наслоению и появлению ярких полос наложения на низких частотах и темных полос исключения на более высоких частотах
о Регистрация этого артефакта может быть полезна для подтверждения присутствия жировой ткани

Артефакт наложения изображений:
о Возникает тогда, когда размеры исследуемого объекта превышают размеры FOV
о Регистрируется в направлении кодирования и фазы, и частоты, однако в большей степени заметен в направлении кодирования фазы
о Может также регистрироваться в направлении выбора среза при трехмерном сканировании, поскольку при этом появляется еще одно направление кодирования фазы
о Увеличение FOV и числа шагов кодирования фазы помогает снизить проявление артефакта в направлении фазы, как и использование для этого специального программного обеспечения
о Наложение изображений по оси частот можно ликвидировать путем сверхвыборки с частотой выше частоты Найквиста

Артефакт восприимчивости:
о Металл или продукты крови могут нарушать локальную однородность магнитного поля, приводя к потере сигнала или искажению изображения
о Наиболее часто встречаются после стабилизации позвоночника металлоконструкциями
о Выраженность этих артефактов можно снизить, используя относительно новые нечувствительные к металлоконструкциям импульсные методики сканирования
о Могут использоваться как преимущества для диагностики геморрагических или кальфицированных очагов:
— Например, кавернозных мальформаций, кровоизлияний в спинной мозг

Артефакт «молния»:
о Разновидность похожих друг на друга артефактов, наиболее часто регистрируемых в направлении кодирования фазы
о Образуются за счет РЧ шума от оборудования, вследствие неправильно выбранных параметров сканирования или являются следствием воздействия внешнего шума (телевидение или радио, флюороресцентные лампы освещения, оборудование мониторинга состояния пациента и т. д.)
о Обычно легко идентифицируется как артефакт, однако может затруднить идентификацию важных патологических изменений или имитировать их

Артефакт искажения градиента:
о Искажение краев изображения при больших размерах FOV (>30 см), вызванное искажением градиента
о Может быть нивелирован за счет коррекции искажения градиента

Отсутствие усиления сигнала жировой ткани ± неадекватное усиление сигнала воды:
о Выбор с целью усиления спектрального пика средней частоты сигнала жировой ткани селективной импульсной частоты сканирования
о Неоднородность магнитного поля приводит к изменению средней частоты сигнала жировой ткани, поэтому импульсное сканирование, используемое для усиления сигнала жировой ткани, более оказывается неспособным перекрыть спектральный пик сигнала жировой ткани → нарушение усиления сигнала жировой ткани
о Если используемый для усиления сигнала жировой ткани импульсный режим сканирования перекрывает частоты спектрального пика воды → недостаточное подавление сигнала воды

Гипоинтенсивность Т1-сигнала от нормального костного мозга при высокой напряженности магнитного поля (≥ 3,0 Тесла):
о Проблема возникает при изменениях технических параметров сканирования, используемых для создания Т1-ВИ в высоконапряженных полях в течение значительного промежутка времени без учета SAR
о Режим «инверсия с восстановлением» получения Т1-ВИ менее чувствителен kSAR по сравнения с режимом Т1 SE («спин-эхо»), наиболее часто используемым при исследовании позвоночника в магнитных полях напряженностью 3,0 Т.
— Относительная гипоинтенсивность сигнала костного мозга в этом режиме по сравнению с режимом SET1WI симулирует патологическую инфильтрацию костного мозга

3. Рекомендации по визуализации:
• Протокол сканирования:
о Минимизируйте выраженность артефактов путем выбора адекватных параметров сканирования, компенсации тока физиологических сред организма, использования импульсов насыщения, адекватной седации пациента, создания комфортных для проведения исследования условий и т. д.

б) Дифференциальная диагностика артефактов на МРТ позвоночника:

1. Сирингомиелия:
• Истинное расширение центрального канала спинного мозга без (гидромиелия) или с (сирингомиелия) сопутствующим повреждением спинного мозга и миеломаляцией, экцентричная полость
• Обычно не распространяется до конуса спинного мозга, может иметь мешотчатое строение
• Может симулироваться артефактами усечения или ложных изображений

2. Метастазы, распространяемые с током СМЖ:
• Обнаруживаются обычно по меньшей мере в двух плоскостях
• Артефакты пульсации СМЖ могут напоминать по виду (или, наоборот, скрывать) эти образования
• При необходимости для исключения артефактов поменяйте местами фазу и частоту

3. Аневризма и артериовенозная мальформация:
• Появление периодически повторяющихся в направлении фазы ложных изображений свидетельствует о наличии свободного тока жидкости в сосудах или тканях образования
• Отсутствие этого артефакта при технически удовлетворительном качестве МР-томограмм свидетельствует о медленном токе жидкости или тромбозе этих образований

4. Кровоизлияние в спинной мозг:
• Кавернозная мальформация, посттравматическая гематома спинного мозга, новообразование
• Может симулироваться артефактами ложных изображений, радиочастотными помехами, артефактом движения
• Для изменения чувствительности к артефактам используйте режим градиентного эхо (GRE), в котором будет виден ореол вокруг гипоинтенсивных участков, соответствующих геморрагическим очагам

5. Инфильтрация или замещение ткани костного мозга:
• Замещение или абляция, фиброз костного мозга
• Онкогематологические заболевания, замещение костного мозга, заболевания, сопровождающиеся замещением ткани костного мозга, остеопетроз
• Может симулироваться при использовании для получения Т1-ВИ методики Т1 FLAIR в магнитном поле высокой напряженности (≥3,0Т)
• Приводит к относительному по сравнению с режимом SE T1WI снижению интенсивности нормального сигнала костного мозга

в) Клинические особенности артефактов на МРТ позвоночника:
1. Клиническая картина:
• Наиболее распространенные симптомы/признаки:
о Локализация артефактов зачастую не совпадает с клинической картиной
о При кровоизлияниях, инородных телах или фиксаторах из металла необходимо исключить артефакты магнитной восприимчивости
2. Течение заболевания и прогноз:
• Не касаются вопросов лучевой диагностики
3. Лечение:
• Не касается вопросов лучевой диагностики

г) Диагностическая памятка:
1. Следует учесть:
• МР-артефакты нередко отличаются достаточно характерной картиной и поэтому легко распознаются, если исследователь знает и помнит об их существовании
2. Интерпретация изображений:
• Если на изображениях вы встретите необычные изменения, всегда вспоминайте об артефактах:
о Если исключить МР-артефакт не представляется возможным, возможно он и не является артефактом
о Чтобы не пропустить важные патологические изменения, интерпретировать изображения всегда следует в связке с клинической картиной заболевания

д) Список использованной литературы:
1. Zaitsev М et al: Motion artifacts in MRI: A complex problem with many partial solutions. J Magn Reson Imaging. ePub, 2015
2. Mohankumar Ret al: Pitfalls and pearls in MRI of the knee. AJR Am J Roentgenol. 203(3):516-30, 2014
3. Motamedi Det al: Pitfalls in shoulder MRI: part 1 -normal anatomy and anatomic variants. AJR Am J Roentgenol. 203(3):501—7, 2014
4. Motamedi D et al: Pitfalls in shoulder MRI: part 2-biceps tendon, bursae and cysts, incidental and postsurgical findings, and artifacts. AJR Am J Roentgenol. 203(3):508—1 5, 2014
5. Dagia C et al: 3T MRI in paediatrics: challenges and clinical applications. Eur J Radiol. 68(2)309-19, 2008
6. Fries P et al: Magnetic resonance imaging of the spine at 3 Tesla. Semin Musculoskelet Radiol. 12(3):238-52, 2008
7. Shapiro MD: MR imaging of the spine at 3T. Magn Reson Imaging Clin N Am. 14(1):97-1 08, 2006
8. Elster AD et al: Questions and Answers in Magnetic Resonance Imaging. St. Louis: Mosby. 123-47, 2001
9. Peh WC et al: Artifacts in musculoskeletal magnetic resonance imaging: identification and correction. Skeletal Radiol. 30(4): 179—91, 2001

Редактор: Искандер Милевски. Дата публикации: 12.7.2019

источник

Артефакты МРТ

Артефакты МРТ — это ложная интенсивность сигнала на изображении, не соответствующая тканевым параметрам исследуемой области. Надо заметить, что практически любая МРТ имеет те или иные артефакты. Все виды артефактов разделяют на три группы:

1) физиологические (обусловленные физиологическими движениями);
2) системные (методические);
3) аппаратные (измерительные).

Наличие артефактов снижает диагностические возможности метода, затрудняя правильную интерпретацию данных. По ходу изложения материала мы обсуждали причины возникновения как методических и аппаратных, так и физиологических артефактов, и теперь систематизируем основные способы устранения или минимизации артефактов разного типа (табл).


Аппаратные артефакты устраняются при правильной настройке измерительной аппаратуры.
В случае их появления следует обращаться к инженерной службе.

Основными методами, позволяющими устранить системные артефакты, являются:
а) изменение размера ПЗ;
б) увеличение размерности матрицы сырых данных (Nx no сравнению с размерностью матрицы изображений (oversampling);
в) увеличение числа повторов ИП (NEX).

Для устранения «звона» (размытости изображения на границах между различающимися тканями) либо увеличивают количество кодировок фазы, либо, при задании протокола ИП, меняют тип весовой функции/фильтра обработки «сырых» данных.
Системные артефакты из-за химического сдвига и посторонних металлических предметов возникают лишь в аппаратах с сильным магнитным полем; они не проявляются в слабых магнитных полях.
Наиболее важными для диагностики являются физиологические артефакты. На изображении они проявляются в виде «ряби» или «потери» сигнала от ткани, например от быстродвижущейся части потока крови или движения глаз или от присутствия металла.

Для периодических артефактов характерно появление «призраков» — многократных контуров анатомических структур в фазокодирующем направлении, так как кодирование фазы происходит с интервалом TR, сопоставимым с временами физиологических движений. Для минимизации подобных искажений применяют методы:
а) предварительного насыщения (артефакты, обусловленные дыхательными движениями, пульсацией крови в крупных сосудах и пульсацией ликвора);
б) физиологической синхронизации (дыхательной и сердечной);
в) компенсации движения тканей с помощью дополнительных градиентных импульсов (артефакты, обусловленные кровотоком и ликворотоком);
г) перемены направления фазокодирующего градиента (артефакт из-за движения глаз).

Примеры артефактов представлены ниже.

источник

Артефакты на мрт позвоночника

1. Синонимы:
• КТ: эффект увеличения жесткости излучения или эффект размытия изображения
• МРТ: артефакт магнитной восприимчивости

2. Определения:
• Снижение качества изображений, связанное с наличием в зоне исследования металлических протезов/имплантов
• Магнитная восприимчивость:
о Частичное намагничивание материала в условиях наведенного внешнего магнитного поля
о В области металлов, не обладающих ферромагнитными свойствами, изменение магнитного поля сканера приводит к появлению местных электрических токов
о Наличие в поле исследования тканей с различной магнитной восприимчивостью в условиях однородного магнитного поля ведет к:
— Искажению магнитного поля и, как следствие, к искажению получаемых изображений
— Появлению артефактов магнитной восприимчивости, состоящих из двух дополнительных компонентов:
Геометрические искажения + потеря сигнала в результате смещения фазы

КТ: артефакты от металлических объектов, связанные с особенностями алгоритма реконструкции изображений (фильтра):
о Силы тока рентгеновской трубки (в мА)
о Пиковое напряжение на трубке и питч
о Состав металла, форма и положение объекта
о Полихроматическая природа рентгеновских лучей, излучаемых рентгеновской трубкой, в сочетании с элиминацией низкоэнергетических фотонов ведет к появлению артефактов усиления жесткости излучения:
— Это темные полосы в областях, содержащих плотные объекты, к которым относятся, например, кости
— Эффекты частичного объема или «недолет» фотонов в результате ослабления их энергии при прохождении через плотные (металлические) объекты в зоне исследования → артефакты размытия:
Мелкие → в виде теней, крупные → вид грубых полос и темных участков, где изображение отсутствует
Являются результатом ослабления рентгеновского излучения при прохождении его через металлические конструкции, хирургические скобки и клипсы, депозиты кальция
о Металлические объекты вызывают выраженное ослабление излучения, в результате которого изображение в некоторых областях полностью утрачиваются
о Отсутствие части данных или пустые проекции приводят к появлению на конечных изображениях классической картины «сияющей звезды» или полосовидных артефактов
о Материалы с низкими коэффициентами ослабления рентгеновского излучения характеризуются менее выраженными артефактными искажениями изображений:
— Пластик (наименьший коэффициент) стандартный SE > GRE
• Протокол исследования:
о КТ: тонкосрезовая спиральная КТ позволяет получить более качественные изображения, чем использовавшиеся ранее КТ-сканеры (с дискретным формированием каждого среза)
о МРТ: оптимальные режимы исследования не должны включать градиентное эхо:
— Предпочтительными являются режимы FSE
— В оптимальном режиме FSE промежутки между эхо должны оставаться короткими (длина эхо-трейна при этом не имеет большого значения)
— Эффективны режимы одноимпульсного FSE с использованием только половины данных пространства Фурье (HASTE)
— Не следует прибегать к гибридным режимам исследования, включающим GRE и SE-компоненты
— Частоты, используемые для селективного насыщения жировой ткани, в условиях металлоконструкций обеспечивают очень низкое качество изображений
— Ориентация направления кодирования частоты вдоль длинной оси педикулярного винта позволяет снизить выраженность артефактов (за исключением области за верхушкой винта)

(Слева) MPT: артефакт от протеза шейного межпозвонкового диска. Эффекты искажения изображений в наибольшей степени выражены в направлении кодирования частот.
(Справа) На томограмме этого пациента визуализируется артефакт магнитной восприимчивости от межтелового кейджа. Факторы, влияющие на характер регистрируемых артефактов, включают состав металла (металлы, не обладающие ферромагнитными свойствами, являются источником менее выраженных артефактов), размеры импланта (артефакты от более крупных имплантов могут в большей степени экранировать окружающие структуры) и ориентация металлического объекта относительно направления внешнего магнитного поля.

в) Дифференциальная диагностика металлических артефактов позвоночника:

1. Костная ткань/остеофиты:
• Низкая интенсивность сигнала и четкие границы во всех режимах исследования: жировой костный мозг может характеризоваться высокой интенсивностью Т1-сигнала

2. Газ:
• Отсутствие протонов → отсутствие сигнала
• Пузырьки газа в эпидуральном или субарахноидальном пространстве ятрогенного происхождения
• Феномен вакуума при дегенеративных изменениях межпозвонковых дисков

3. Гематома:
• Низкая интенсивность Т2-сигнала, связанная с накоплением дезоксигемоглобина

4. Грыжа диска:
• Дегидратация или кальцификация диска, приводящие к снижению интенсивности сигнала
• Пузырьки газа вследствие феномена вакуума в области смежных участков диска

(Слева) МРТ после корпорэктомии С5 с пластикой опорным костным трансплантатом из малоберцовой кости: нет артефактов магнитной восприимчивости. Винты в телах смежных позвонков несколько искажены. Размеры артефактов увеличиваются пропорционально увеличению угла между длинной осью винта и направлением основного магнитного поля.
(Справа) МРТ после подзатылочной краниэктомии и окципитоспондилодеза с фиксацией пластиной Выраженность артефактов можно уменьшить за счет уменьшения области сканирования, использования матриц высокого разрешения, уменьшения толщины среза и высокой мощности градиента.

г) Патология. Общие характеристики:
• Этиология:
о При передних дискэктомиях шейного отдела позвоночника достаточное для появления артефактов количество частичек металла может появляться в зоне контакта с костью металлических сверел или аспирационных катетеров:
о Источниками артефактов магнитной восприимчивости после дискэктомий и спондилодезов на шейном уровне могут быть микроскопические частички никеля, меди и цинка

д) Клинические особенности:

1. Клиническая картина:
• Наиболее распространенные симптомы/признаки:
о Обычно бессимптомное течение, обычные послеоперационные изменения

2. Демография:
• Возраст:
о Любой
• Пол:
о Половая предрасположенность отсутствует
• Эпидемиология:
о В 5% случаев дискэктомий на уровне шейного отдела позвоночника металлические артефакты, наблюдаемые при лучевых методах исследования, ограничивают визуализацию дурального мешка на этом уровне

(Слева) Артефакт магнитной восприимчивости при исследовании в режиме SE/FSE (потеря и искажение сигнала) проецируется вдоль направления кодирования частот.
(Справа) С целью минимизации выраженности артефактов направление кодирования частот следует ориентировать вдоль длинной оси металлоконструкций (так, чтобы артефакт проецировался на эти металлоконструкции). При наличии в поле исследования педикулярных винтов направление кодирования частот должно быть ориентировано спереди назад. Расширение частотной полосы приемника, максимальное увеличение длины эхо-трейна, уменьшение толщины срезов и времени эхо также позволяют уменьшить выраженность артефактов магнитной восприимчивости.

е) Диагностическая памятка:
1. Следует учесть:
• После передней дискэктомии/спондилодеза на уровне шейного отдела позвоночника в зоне костного блока всегда обнаруживается небольшое число металлических артефактов:
о Они являются результатом контакта металлических инструментов с костной тканью
• Размеры МР-артефактов от педикулярных винтов коррелируют с уменьшением соотношения между размерами области сканирования и числа пикселей в направлении кодирования частот
2. Советы по интерпретации изображений:
• Минимизировать выраженность артефактов от педикулярных винтов позволяет ориентирование градиента кодирования частот параллельно длинной оси винта и использование режимов FSE
• При наличии в области исследования металлоконструкций достаточно выполнять срезы толщиной 3-4 мм, более тонкие срезы могут быть менее информативны вследствие большей выраженности артефактов

ж) Список использованной литературы:
1. Hakky М et al.: Application of basic physics principles to clinical neuroradiology: differentiating artifacts from true pathology on MRI. AJR Am J Roentgenol. 201 (2):369-77, 2013
2. Stradiotti P et al: Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI: state of the art. Eur Spine J. 18 Suppl 1:102-8, 2009
3. Lee MJ et al: Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics. 27(3):791 -803,2007
4. Buckwalter KA et al: Multichannel CT Imaging of Orthopedic Hardware and Implants. Semin Musculoskelet Radiol. 10(1):86-97, 2006
5. Chang SD et al: MRI of spinal hardware: comparison of conventional T1-weighted sequence with a new metal artifact reduction sequence. Skeletal Radiol. 30(4):213-8, 2001
6. Viano AM et al: Improved MR imaging for patients with metallic implants. Magn Reson Imaging. 18(3):287-95, 2000
7. Henk CB et al: The postoperative spine. Top Magn Reson Imaging. 10(4):247-64, 1999
8. Rudisch A et al: Metallic artifacts in magnetic resonance imaging of patients with spinal fusion. A comparison of implant materials and imaging sequences. Spine. 23(6):692-9, 1998
9. Suh JS et al: Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies. AJR Am J Roentgenol. 171 (5): 1207-13,1998
10. Taber KH et al: Pitfalls and artifacts encountered in clinical MR imaging of the spine. Radiographics. 18(6): 1499-521, 1998

Редактор: Искандер Милевски. Дата публикации: 17.9.2019

источник

Послеоперационные артефакты на МРТ

Артефакты на МРТ: от металла, движения, послеоперационных изменений

Артефакты – это погрешности, которые значительно ухудшают качество визуализации при МРТ. Существует целый перечень побочных эффектов, которые существенно ухудшают качество графической картинки.

Есть большая группа физиологических дефектов, погрешностей от случайных движений, морганий, глотания во время выполнения процедуры. Послеоперационные артефакты на МРТ не позволяют полноценно определить состояние человека после осуществления хирургической манипуляции, выявить характер отека, злокачественной сформированной рубцовой ткани. Искажения, мешающие оптимальному восприятию, требуют верификации другими методами.

Артефакты на МРТ: основные виды

В зависимости от вариаций артефакты при магнитно-резонансной томографии разделяются на ошибочное позиционирование, дефекты сдвигов, двигательные искажения. В ряде случаев возникает имитация патологии, которая мешает правильной трактовке ситуации.

Для определения артефактов требуется предварительно оценить состояние человека при проведении обследования. Если он неровно дышит, моргает, двигается на томограмме возможны погрешности.

Основные виды артефактов на МРТ:

1. Проблемы с системой РЧ-детекции – квадратурные погрешности;
2. Артефакты от металла на МРТ – негомогенность поля на снимке;
3. Неправильный градиент магнита – искажение градиента;
4. Нарушения работы РЧ-катушки;
5. Артефакты «motion» – движение пациента при сканировании;
6. Движение жидкости – артефакт потока;
7. Химический сдвиг тканей – артефакт;
8. Высокие размеры воксела;
9. Неправильный выбор поля.

По степени изменения качества картинки выделяют несколько видов артефактов:

• Связанные с некачественной работой оборудования;
• Проблемы при единичном сканировании;
• Дефекты, которые существенно не нарушают интерпретацию изображений.

Вышеописанные проблемы могут вызываться поведением пациента при сканировании, физическими факторами, неисправностью аппаратуры, некорректными действиями оператора.

Особый вид – это послеоперационные дефекты на МРТ, обусловленные формированием рубцовых тканей, отечностью, воспалением, застойными изменениями крови.

Артефакты дыхательной активности возникают из-за проблем с настройкой сканирования. Погрешности тем более выражены, чем длиннее интервал дыхательного цикла человека. Неправильные настройки сканирования, приводящие к ассиметрии эхо-последовательностей и детекции сигнала, способствуют размытости контуров исследуемой области.

Артефакты сердечных сокращений на магнитно-резонансной томограмме

Артефакты сердцебиения также появляются при выборе режима с интервалом томографии больше времени сердечного цикла человека.

Пульсация сосудов при МРТ устраняется оптимальным выбором интервала синхронизации, совпадающего с набором последовательной импульсов. При движении человека вероятно появления погрешностей с усиленным сигналом.

При расположении объекта за рамкой FOV возникает ошибка «phase wrap (свертка картинки)». Часть предмета располагается с обратной стороны рамки томограммы.

Артефакт от металла на МРТ сопровождается неоднородным ярким, пространственным изображением. Для устранения ферримагнитного эффекта нужно применять SE-последовательности с увеличением центрального градиента считывания.

Очевидно, огромное количество дефектов на МРТ-сканах. Не все погрешности устраняются выбором оптимальных сканирующих программ, поэтому требуется оптимальное соблюдение требований на подготовительном этапе.

Строгое неподвижное положение человека – это гарантия четких контуров картины на томограмме.

Позиционные, технологичные и двигательные артефакты на МРТ:

Рассмотрим особенности распространенных артефактов на МРТ. Следствием квадратурных РЧ артефактов являются погрешности детекции.

Фазочувствительные дефекты определяются схемами детекции фазовой чувствительности. Данные Фурье при данном искажении проявляются интенсивным центральным пятном. Неравномерное усиление сигнала с детектора обеспечивает ложные изображения.

Негомогенность магнитного поля приводит к искажению изображения в определенных участках. На характер томограммы влияет пространственное расположение, интенсивность поля.

Пространственные дефекты – это результат постоянных протяженных градиентов.

Градиентные артефакты возникают из-за погрешностей системы считывания. Непостоянное направление эхо-сигнала вызывается неправильной работой катушки, искаженной передачей по цепи электрического тока.

Артефакт от металла на МРТ

Дефекты негомогенности возникают из-за проблем с поперечной интенсивностью. Причиной патологии является неоднородность поля B12. Неоднородное силовое поле катушки создает поверхностные и глубокие сигналы разной силы. Выявить погрешности можно по наличию одного вида пятна на томограммах у разных категорий пациентов.

Металл на МРТ при проблемах с катушкой приведет к обнулению сигнала в графической картинке.

Двигательные артефакты на МРТ

Движения пациента при выполнении МРТ создают существенные погрешности при сканировании определенной области. Двигательная активность приводит к размытию объекта, возникновению посторонних пятен. Если двигается незначительная область, размывается небольшая часть картинки.

Наложение «сырых» и «старых» данных при смещении исследуемой области создает неясную графическую картинку.

Для устранения погрешностей движения на магнитно-резонансной томограмме достаточно принять неподвижное положение. Искажения могут создавать дыханием, сокращением сердца. Такие проблемы устраняются правильном подбором режимов сканирования.

При пульсации артерии врачи лучевой диагностики применяют технологию фазового кодирования через определенные промежутки времени.

Производители магнитно-резонансных томографов создают специальные программы для устранения артефактов сокращений сердца и дыхания. Алгоритмы программного обеспечения самостоятельно подстраиваются под дыхательные акты, сердечные сокращения, возможно применение технологии триггерирования.

Другие артефакты при МР-сканировании

Потоковые артефакты обусловлены движением крови и других жидкостей. Дефекты возникают после испытывания РЧ-импульса во время циркуляции. Если при регистрации сигнала детектором жидкость вытекает из плоскости сканирования, возникают погрешности томографии.

Искажения химического сдвига обусловлены разными градиентами жира и воды в разных плоскостях при срезах. Спины жира могут смещаться под влиянием РЧ-импульса. Фазово-контрастный градиент между водой и жиром в разных вокселах по разному кодирует сигнал. На томограмме ситуация проявляется разным векторным градиентом. Интенсивность зависит от мощности магнитного поля, измеренного в Тесла.

Двигательные артефакты (рисунок а)

Дефекты порционного объема вызываются величинами воксела графической картинки. При маленьком объеме воксела передается сигнал только от жира и воды. При крупном размере графической единицы последовательность содержит средневзвешенный градиент от нескольких сред. Качество картинки в этих двух случаях значительно отличается.

Еще одним дефектом является потеря разрешения. Провоцируется искажение кодировкой нескольких признаков, заложенных в единичном вокселе.

Артефакты заворота обуславливают искажение анатомического представления внутри и вне обзорного поля. Погрешности формируются при выборе размера поля, которое меньше обследуемой области.

Звон Гиббса – артефакт обусловлен неправильной оцифровкой эхо. Погрешность характеризуется усилением линий края, приводящим к искажению изображения. Артефакт обусловлен небольшой матрицей для сбора сигнала.

При описании артефактов на МРТ нельзя забывать о существовании МР-фантомов – РЧ-однородостный, разрешающий.

Последний вариант применяется исключительно для тестирования характеристик пространственной передачи изображения:

1. Срезовая толщина;
2. Соотношение между линейностью и сигнал-шумом;
3. Разрешающая способность.

Для определения характеристик применяются специальные эталоны – пластмассовые фантомы с заполнением водным раствором. Стандарт имеет разную плотность для сравнения с эталонными показателями при исследованиях Т1, Т2 для оценки пропорций шум-контраст.

Однородностные фантомы применяются для передачи однородности магнитного поля. Для вращения намагниченности применяется поле B1. Чувствительность катушки проверяется РЧ-полем (B1R). Для оценки однородности требуется анализ нескольких срезов одного фантома.

Послеоперационные Dwi мрт артефакты

Послеоперационные изменения могут искажать качество томограммы. Развитие рубцовой ткани, формирование воспаления и отеков – это анатомические субстраты, искажающие интенсивность сигнала.

Дефекты изображения возникают также после core-биопсии и вакуумного исследования. Хирургическая травма приводит к разрастанию фиброзной ткани. Описанные изменения способствуют формированию следующих изменений на МРТ:

1. На T2 изображении появляются структурные нарушения низкой интенсивности;
2. При отечности – высокоинтенсивный сигнал;
3. Контрастное усиление – последствие разрастание мелких сосудов;
4. Отсутствие усиления в застарелых рубцах;
5. Появление звездчатых образований;
6. На преконтрастном Т1 изображении – низкоинтенсивные архитектонические нарушения.

Несмотря на наличие артефактов в рубцах в послеоперационном этапе они должны быть тщательно обследованы для исключения раковой малигнизации. При злокачественном преобразовании возникает контрастное усиление МР-изображения рубца.

У части пациентов послеоперационные изменения обусловлены ранним жировым некрозом тканей. Ограниченные участки омертвения появляются не позже 6 месяцев после операции. В области поражения скапливаются гистиоциты и лейкоциты. Инфильтрация на фоне грануляционных элементов приводит к искажению МР-сигнала.

Следствием погрешностей МР-томограммы является некроз жировой ткани. На магнитно-резонансных сканах при этой патологии прослеживаются следующие признаки:

• На Т1 изображении визуализируется низкоинтенсивный очаг;
• Нечеткие контуры области с жировым некрозом;
• Рубцовы артефакты после коагуляции;
• Постконтрасные Т1 сканограммы с кольцевидным гомогенным усилением;
• Нетипичные проявления динамического контрастирования;
• На Т2 взвешенном изображении – очаги неправильной формы с разной интенсивностью.

Диффузионно-взвешенные изображения (DWI) не позволяют отличить вазогенный и цитотоксический виды отеков. Дифференцировать данные морфологические формы можно на основе ADC-карт.

Проведение методики возможно из-за беспорядочного потока воды в тканях. Во всех плоскостях передвижение молекул осуществляется одинаково. В биологических тканях движение ограниченно из-за сочетания с макромолекулами, мембранами. Степень движения воды в единице объема прямо пропорциональна плотности ткани. То есть, чем больше жидкости в межклеточной среде, тем выше диффузия. В опухолевой ткани много клеточных элементов. Оценка пропорциональности между этими средами позволяет отличить злокачественное новообразование от отечных элементов.

DWI уже несколько лет применяется для верификации внутричерепной патологии.

Последние разработки позволяют использовать диффузионно-взвешенные томограммы для обследования грудной полости, таза, дифференциации разных опухолей печени. По достоверности метод приближается к позитронно-эмиссионной томографии (ПЭТ/КТ).

При близкой плотности тканей возникают DWI МРТ артефакты, обусловленные формированием сигнала одинаковой интенсивности от разных морфологических субстратов сходной плотности.

На DWI режимах можно отличать некоторые послеоперационные изменения от здоровых тканей.

При работе на качественном оборудовании, тщательном обучении пациента правилам проведения магнитно-резонансной томографии удается избежать погрешностей обследования. Перед тем как назначать другой метод обследования, рекомендуется оценить полученные данные с целью последующей более достоверной магнитно-резонансной томографией с исправлением погрешностей.

Получите мнение независимого врача по Вашему снимку

Пришлите данные Вашего исследования и получите квалифицированную помощь от наших специалистов

источник

Adblock
detector